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Abstract. We characterize in details the aging properties of the ferroelectric phase of KTa1−xNbx O3

(ktn), where both rejuvenation and (partial) memory are observed. In particular, we carefully examine
the frequency dependence of several quantities that characterize aging, rejuvenation and memory. We
find a marked subaging behaviour, with an a.c. dielectric susceptiblity scaling as ω

√
tw, where tw is the

waiting time. We suggest an interpretation in terms of pinned domain walls, much along the lines proposed
for aging in a disordered ferromagnet, where both domain wall reconformations and overall (cumulative)
domain growth are needed to rationalize the experimental findings.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 77.22.Gm
Dielectric loss and relaxation – 78.30.Ly Disordered solids

1 Introduction

Aging is a widespread phenomenon which manifests itself
through the dependence of the properties of a material on
the history of the studied sample [1]. It has been observed
and widely documented on the magnetic susceptibility of
spin-glasses (SG) [2–5] and disordered ferromagnets [6],
on the elastic compliance of polymers [7], on the dielectric
constant of disordered dielectrics (‘dipolar glasses’) [8,9]
and of some liquids [11], and recently on the rheological
properties and dynamical structure factor of ‘pasty’ col-
loids [12,13]. Aging reflects the fact that the time needed
for the system to equilibrate becomes larger than the ex-
perimental time scales. Although several theoretical mod-
els for aging have been investigated, the correct physical
picture for aging is still rather controversial, in particular
in spin-glasses. The simplest model for aging is that of do-
main growth: below some critical temperature, the system
progressively orders by growing domains of the competing
low temperature phases (for example up and down in the
case of an Ising ferromagnet). In this case, the aging of
the susceptibility can be understood from the dynamics
of pinned domain walls: as time elapses, the density of do-
main walls decreases, and the remaining domain walls are
better and better pinned.

Stronger constraints on microscopic theories appear
when one wants to interpret the so-called ‘rejuvenation
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and memory’ effect [14]. Suppose that one cools a glassy
system at a constant cooling rateR down to a certain tem-
perature Tpl, which is then held constant. At this tempera-
ture, aging manifests itself by the decrease of some suscep-
tibility (both of its real and imaginary part). If cooling is
then resumed after a ‘plateau time’ tw, the susceptibility is
seen to increase again, approaching the value it would have
had if tw was zero: the system ‘rejuvenates’ as it seems to
forget its stay at Tpl. If cooling is carried further, down to
low temperatures and then followed by a steady heating,
a ‘dip’ in the susceptibility is observed when passing back
through the temperature Tpl. This shows that the system
has actually kept some ‘memory’ of its evolution at Tpl.
The coexistence of these two effects is quite remarkable,
and has led to several theoretical scenarios [15–18]. These
two effects have been seen in a variety of materials: various
spin-glasses, pmma (plexiglass) [19] or ktn (a disordered
dielectric, see below) [20]. However, some materials exhibit
aging but no rejuvenation [21], or rejuvenation but no (or
partial) memory [6].

The aim of this paper is to characterize in more de-
tails the aging properties of the ferroelectric phase of ktn,
where both rejuvenation and (partial) memory are ob-
served [20]. In particular, we have carefully examined the
frequency dependence of several quantities which charac-
terize aging, rejuvenation and memory. We suggest an
interpretation in terms of pinned domain walls, much
along the lines proposed in [6] for a disordered ferromag-
net, where both domain wall reconformations and overall
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domain growth are needed to rationalize the experimental
findings.

Aging has been already observed in ferroelectrics.
For instance, aging in the ferroelectric lock-in phase of
Rb2ZnCl4 [22] was attributed to wall trapping and to an
increase of the total wall area; moreover, it was noticed
that the effects are dispersive. Another example is pro-
vided by solid solutions of lead magnesium niobate and
lead titanate doped with a small amount of manganese ox-
ide MnO [23]. This material, which has a perovskite struc-
ture, exhibits aging and rejuvenation (even if the word is
not used); here too the effects are dispersive. However, in
these examples the frequency dependence was not quan-
titatively studied, no memory was seen and therefore the
relationship between aging and memory was not discussed.

2 Experiments

The pure potassium tantalate crystal KTaO3 belongs to
the cubic perovskite family. Quantum fluctuations pre-
vents a ferroelectric order to establish fully, even at T =
0 K. If a fraction x of tantalum ions is randomly substi-
tuted by isoelectronic niobium ions to give crystals of K
Ta1−x Nbx O3 (ktn), the trend towards ferroelectricity
of the perovskite lattice is enhanced. It has been assumed
that this tendency was due to random fields generated by
the niobium ions [25]. Indeed, if the niobium concentration
x is larger than xc = 0.008, the cooperative ordering gives
way to a ferroelectric phase at temperatures below a fi-
nite transition temperature Tc. For the sample used in the
present study we observe a broad transition at Tc = 31 K,
defined by the maxima of the real part ε′ and the imag-
inary part ε′′ of the dielectric constant, independently of
the measuring angular frequency ω. When x > xc, there
are actually several transitions: when the temperature is
lowered, ktn is successively cubic, tetragonal, orthorhom-
bic and finally, rhombohedral [26]. For the concentration
x of our sample, the three transitions merge into a single
one. From the phase diagram obtained in [26], we infer
that the niobium concentration is around x = 0.022. The
experiments reported below were all performed at temper-
atures T < 25 K, where the material has a local rhombo-
hedral symmetry but is macroscopically cubic, and is in an
ordered (ferroelectric) phase which contains some amount
of disorder (the randomly substituted niobium ions).

Using a Hewlett-Packard 4192A impedance analyser,
we have measured the electric capacitance and the dielec-
tric loss at seven frequencies, ranging from f = 1 kHz to
f = 1 MHz. These can easily be transformed into the real
part ε′ and the imaginary part ε′′ of the complex dielectric
constant: C = 1 pF corresponds to εr = 16. The electric
field is of the order of 1 kV/m, such that non linearities
can be neglected, at least for T < 20 K. Non linear effects
do become strong around the transition temperature Tc.
Note that our fields are much weaker than those used in
[24] (ranging from 2 to 200 kV/m) for a study of the non
linear dielectric constant of a relaxor ferroelectric, where
2 kV/m is already considered as a very weak field.

We measure the complex capacitance C(ω, t, T ) as a
function of time t while the sample temperature T is a con-
troled function of time. Several procedures were used after
an annealing near 55 K and an initial rapid cooling across
the transition temperature Tc down to Tmax = 22 K. The
simplest procedure was composed of a cooling at a con-
stant rate dT/dt = −R from Tmax to Tmin = 4.8 K, imme-
diately followed by a steady heating at the opposite rate
dT/dt = +R from Tmin to Tmax: this was used as the ref-
erence curves. Another procedure is to cool at the same
rate −R between Tmax and an intermediate temperature
Tpl. There, cooling is interrupted by an isothermal evolu-
tion or plateau at this temperature, which lasts typically
tw = 10 000 seconds. Cooling then resumes down to Tmin

and is again immediately followed by a steady heating at
the opposite rate from Tmin to Tmax. A typical cooling rate
is R = 5.2 mK/s.

3 Frequency analysis of isothermal aging

The isothermal variation of the complex capacitance
C(ω, t) in ktn is a slow decay in time (which also de-
pends on the cooling rate R [27]). This decay can be fit-
ted by a power law (t0 + t)−η with a small exponent η
(typically ' 0.05) and t0 in the range of 102 s. For a
given plateau temperature Tpl and a given plateau du-
ration tw, the total decay of the complex capacitance,
δC(ω, tw, Tpl) ≡ C(ω, t = 0+, Tpl) − C(ω, t = tw, Tpl) ≥ 0
is found to obey a negative power law of the frequency f
and therefore of ω = 2πf . The real part and the imaginary
part of this variation can be fitted by (see Fig. 1):

δC′(ω, tw, Tpl) = N ′ω−ν δC′′(ω, tw, Tpl) = N ′′ω−ν ,
(1)

with the same exponent ν. This is actually a general con-
sequence of the Kramers-Krönig relations, which hold for
a linear, stationary and causal response theory. Although
aging means that the response is non stationary, these
Kramers-Krönig relations are valid in the quasi stationary
limit where ω−1 � tw, which obviously holds in our ex-
periments (where ωtw � 103). The Kramers-Krönig equa-
tions actually also provide a precise relation between the
amplitudes N ′ and N ′′, which only depends on the value
of ν:

N ′′

N ′
= tan

(νπ
2

)
. (2)

This relation provides a second determination of ν, by
checking the constancy of the ratio of the imaginary and
real parts of δC, and using equation (2) to extract ν. As
shown in Figure 1, obtained for Tpl = 12.1 K and tw =
20 000 s, these two procedures allow one to obtain rather
close estimates for ν. The regression in log-scale based
on equation (1) gives ν = 0.127 ± 0.005. The exponent
ν is found to depend weakly both on temperature and
time. More precisely, it varies linearly with Tpl but only
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Fig. 1. Behaviour of the total decay of the real-part of the
capacitance, δC′(ω, tw, Tpl) ≡ C′(ω, t = 0+, Tpl) − C′(ω, t =
tw, Tpl), as a function of the frequency f = ω/2π, for tw =
20 000 s and Tpl = 12.1 K. The magnitude of this decay is
found to behave as a power-law of the frequency: δC′ ∝ ω−ν ,
with ν = 0.127±0.005 over three decades in frequency (1 kHz –
1 MHz). We show in the inset the ratio δC′′/δC′ as a function
of frequency. For a power-law dependence, this ratio should be
constant, equal to tan(νπ/2) = 0.202, shown as the full line.

logarithmically with tw. The magnitudes N ′ and N ′′ are
increasing functions of Tpl and tw.

In spin glasses, the dependencies of the aging part of
the susceptibility on the waiting time tw and on the fre-
quency ω are not independent, but rather follow a simple
ωtw scaling, which means that the typical relaxation time
after waiting tw is tw itself. More generally, one may ex-
pect scaling with ωtµw, where µ is an exponent, generally
found to be smaller than 1: this corresponds to ‘sub-aging’
[1,16]. It is interesting to look for a similar scaling in our
data. As shown in Figure 2, the aging part of the capaci-
tance can indeed be approximately rescaled with µ ' 0.5,
leading to:

C(ω, tw, Tpl) ' Cst(ω, Tpl) + C(Tpl)× (ωtµw)−ν tw � t0,
(3)

where Cst is the stationary part of the response. This equa-
tion describes simultaneously both the above discussed
frequency dependence and the time relaxation of the ag-
ing part, with the exponent relation η = νµ.

4 Frequency analysis of rejuvenation
and memory

A useful way to parametrize the ‘strength’ of rejuvenation
is to compare the slope S = ∂C′/∂T of the capacitance
with temperature just after the plateau at Tpl with the
slope Sr of the reference curve, which is positive for all
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Fig. 2. Rescaling of the capacitance for various frequencies ω
(from 1 kHz to 1 MHz) and plateau times tw. The temperature
here is Tpl = 9.8 K. We have chosen the stationary part Cst(ω)
(corresponding to a vertical shift) to obtain the best rescaling,
as a function of (ω1/µtw)−η, with µ = 1/2 and η = 0.05, cor-
responding to ν = 0.10. The rescaling is not perfect for the
early time part where the time scale t0 introduced in the text
cannot be neglected. Inset: Relaxation of C(ω, tw) at 3.16 kHz,
and fit of the decay with a pure power law of exponent η = 0.05
(dashed line).

frequencies. The stronger the difference δS = Sr − S, the
stronger the ‘rejuvenation’ effect. We find again that δS
is a negative power-law of the frequency: small frequen-
cies are more efficiently ‘rejuvenated’. The value of the
exponent is found to be similar to that of ν. For example,
for Tpl = 14.3 K and tw = 10 000 s, we find an exponent
equal to 0.20. Note that for small enough frequencies, the
capacitance increases when the temperature is decreased
(S < 0), while the capacitance decreases (S > 0) at high
frequencies, as is the case of the reference curve.

Figure 3 shows, as a function of temperature, the real
part of the capacitance C′(ω, T ) for two thermal histories.
The first curve is the reference curve corresponding to a
regular cooling from Tmax to Tmin, followed by a regular
heating from Tmin to Tmax. The value of C′(ω, Tmin) along
this path is indicated by point ‘C’ in Figure 3, and the
value of C′(ω, Tpl) at T = Tpl are point ‘A’ on the cooling
curve and point ‘E’ on the heating part.

The second curve corresponds to a regular cooling from
Tmax to Tpl (point ‘A’ again), followed by isothermal ag-
ing at Tpl = 12.1 K for a certain time tw = 20 000 s,
reaching point ‘B’. The isothermal decay reported above
is therefore δC′(ω, tw, Tpl) = |A − B|. Then regular cool-
ing resumes from Tpl to Tmin, where it reaches point ‘D’
which is below point ‘C’. The distance |C − D| reflects
some cumulative aging due to the plateau at Tpl. The last
part of the curve is again obtained by a regular heating
of the system. The value of C′(ω, Tpl) when passing Tpl is
point ‘F ’.
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Fig. 3. Capacitance C′(ω, T ) at 1 kHz, for two thermal histo-
ries, one without a plateau at Tpl, the other with a long plateau
at Tpl. The important points A, B, ..., F used in the text are
defined in this figure. The inset shows a zoom of the region
around Tpl. Note the small temperature fluctuations during
the plateau period.

If the system had lost all specific memory of its stay
at temperature Tpl, point F would be situated at point E
translated downwards by the cumulative part of the mem-
ory, measured by |C−D|. The extra difference can thus be
taken as a measure of the specific memory of the processes
taking place at Tpl. We therefore define the memory indi-
catorM′(ω) as:

M′(ω) = |E − F | − |C −D|. (4)

A situation where the memory is perfectly conserved
would lead to M′ = |A−B| ≡ δC′.

As shown in Figure 4, this difference is positive in
ktn, and again behaves as a power-law with frequency.
Interestingly, the exponent describing this behaviour is
very close to ν. For Tpl = 12.1 K and tw = 20 000 s,
we find a value of 0.13, nearly identical to the value of
ν reported in Figure 1. In the inset of Figure 4, we have
shown the ‘memory ratio’, i.e. the ratio ofM′ to the total
isothermal decay δC′ during the plateau studied above,
for different frequencies. This ratio is around 0.5 (showing
that some memory is lost), but is nearly independent of
frequencies, showing that the frequency dependence of the
memory is actually that of the aging part of C′. A simple
interpretation of this fact will be given below.

5 Interpretation

The microscopic origin of aging in disordered ferromag-
nets or ferroelectrics is most probably the slow dynamics
of domain walls, pinned by impurities. The important in-
gredient to understand the physics of these pinned objects
is the fact that the typical pinning energy associated with
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Fig. 4. The memory indicator M′(ω) as a function of fre-
quency for Tpl = 12.1 K and tw = 20 000 s, in a log-log plot.
The exponent found here is the same as in Figure 1, as demon-
strated in the inset where the ‘memory ratio’M′/δC′ is shown
to be constant, around 0.5, over at least three decades in fre-
quency.

a portion of wall of linear length ` grows as Υ`θ, where
θ is a certain exponent and Υ an energy scale [28]. This
means that the time needed to equilibrate such a portion
of wall grows exponentially, as τ(`) ∼ exp(Υ`θ/T ). Corre-
spondingly, as emphasized in [16], time scales are strongly
hierarchized, in the sense that τ(2`)� τ(`). Hence, some
small scale reconformations can take place while the over-
all, large scale configuration of the domain wall is fixed.
This small scale motion between metastable states leads
to better and better pinned configurations, and therefore
a smaller susceptibility: this leads to aging, even if the
overall size of the domains does not change. The large
scale coarsening leads to a progressive increase of the av-
erage domain size R, and thus a decrease of the fraction
of dipoles belonging to domain walls, as 1/R. The coexis-
tence of these two effects suggests that the aging part of
the susceptibility (magnetic or dielectric) should read:

Cag(ω, tw, Tpl) =
1

R(tw)
[cst(ω, Tpl) + crec(ω, tw, Tpl)],

(5)

where cst(ω, Tpl) is the equilibrium contribution of a wall
of fixed (large) size, and crec(ω, tw, Tpl) is the aging con-
tribution, due to small scale reconformations which al-
low the wall to find deeper and deeper metastable states.
Simple ‘trap’ models for these reconformations suggest
that crec ∝ (ωtw)−ν (ν < 1)[29]. More general (subag-
ing) forms are possible [16,30], as observed experimentally
(see Fig. 2). A possible physical mechanism is that each
metastable state is visited a large number of times. Note
that in Figure 2 we have neglected the time dependence
of R, which is justified if the cooling rate |R| is small
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enough. In that case, the relative growth of R during tw
can be neglected.

As explained in [16,18,29], the reconformation contri-
bution can account for the rejuvenation and memory ef-
fect. As the temperature is decreased, the small scale mo-
tion, which was in equilibrium at the higher temperature,
is suddenly driven out of equilibrium. The aging part
crec ∝ (ωt)−ν has a singularity for t = 0 that reflects
the excess dissipation that arises in strongly out of equi-
librium situations. The physical mechanism is that some
high energy traps are suddenly overpopulated at the lower
temperature and must quickly empty out. Therefore any
‘micro-quench’ leads to an increased susceptibility and
new aging dynamics. Simultaneously, larger scale dynam-
ics is effectively frozen and contributes to memory. The
distinctive feature of equation (5) is however the cumu-
lative factor 1/R that always grows as soon as the sys-
tem is in its ferroelectric phase (albeit more slowly at
smaller temperatures). This cumulative factor is at the
origin of all cooling rate effects (see the discussion in [21]).
It also explains the change of sign of the slope S reported
above: at high frequency, the reconformation contribu-
tion crec(ω, tw, Tpl) is negligible, and the main effect is
the progressive increase of R which leads to a decrease
of Cag ' cst(ω, Tpl)/R(t). Therefore the slope S just after
the plateau is positive: the capacitance decreases when the
temperature is lowered further. On the contrary, the reju-
venation effect is dominant at low enough frequencies, and
explains why S is negative. The frequency dependence of
δS is thus expected to be similar to that of the isothermal
decay of the capacitance, as was reported in Section 4.

It is important to note that the large scale domain mo-
tion is also responsible for the loss of memory, as suggested
in [6]: if, during the period spent at lower temperatures,
the domains have had enough time to move substantially
and lose track of their previous position relative to the im-
purities, the memory effect is lost. More precisely, let us
call p(tlow) the probability that a given wall has not sub-
stantially moved during the time tlow = 2(Tpl−Tmin)/|R|
spent at low temperatures, and thus retains the memory
of the past history. The capacitance reached at Tpl on the
heating curve after a plateau at Tpl (point ‘F ’ in Fig. 3)
is therefore equal to:

Cpl(ω) ' 1
R(tw + tlow)

[cst(ω, Tpl) + pcrec(ω, tw, Tpl)

+(1− p)crec(ω, 0+, Tpl)], (6)

where the origin of time is chosen when Tpl is first reached
(point ‘A’). The above equation means that a fraction p
of the signal has kept full memory, while a fraction 1−p is
totally rejuvenated. This decomposition is only approxi-
mate, since the memory part is affected by the time spent
near Tpl. The memory indicator defined above can be writ-
ten as:

M(ω) =
1

R(tw + tlow)
[cst(ω, Tpl)

+crec(ω, 0+, Tpl)]− Cpl(ω), (7)

where the first term in the right hand side is the capaci-
tance that one would measure in the absence of any mem-
ory (p = 0). We there find that the memory indicator
M is related to the isothermal decay of the capacitance
δC(ω, tw, Tpl) by:

M(ω) ' p(tlow)
R(tw + tlow)

[
crec(ω, 0+, Tpl)− crec(ω, tw, Tpl)

]
,

(8)

or

M(ω) = p(tlow)
R(tw)

R(tw + tlow)
δC(ω, tw, Tpl). (9)

This proportionality is indeed confirmed by Figure 4. Note
that p is expected to decrease when tlow increases. On the
other hand, the ratio R(tw)/R(tw + tlow) (which is ex-
pected to be close to 1 in the experiments) also decreases
when tlow increases. Therefore, the amplitude of the mem-
ory is expected to decrease as the cooling rate decreases.
We have checked this feature experimentally, and have
found that the dependence of M′ on the cooling rate R
can be fitted approximately by a power lawM′ ∝ Rβ with
β = 0.28 for Tpl = 14.4 K and tw = 10 000 s, and R in the
range 1.3 to 20.8 mK/s. This experimental dependence
suggests that for very small cooling rates, the memory
effect is eventually totally erased by domain growth, as
proposed in [6] for disordered ferromagnets.

6 Conclusion

The present experiments can be seen as a quantitative
confirmation of the qualitative scenario of aging proposed
in [6,16] for disordered ferromagnets, which ascribes the
observed effects to the motion of pinned domain walls.
The simultaneous presence of overall domain growth and
internal reconformation modes allows one to account for
the phenomenology of temperature cycling: cumulative ef-
fects and memory erosion are due to the former, whereas
rejuvenation and memory are due to the latter, and there-
fore show up for small frequencies. We have also shown
that all the quantities that measure the reconformation
contribution behave as power-laws of frequency, and that
a subaging (ωtµw) scaling holds, with a rather small value
of the exponent µ ' 0.5.

We thank S. Ziolkiewicz who has grown the ktn crystals used
in these experiments, and J. Hammann, E. Vincent and H.
Yoshino for many useful discussions.
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